AFM-xxA/N

- Complete range of precision attenuators
- EN Class A compliant screening effectiveness
- Wide frequency range from 5-3000 MHz
- High return loss specification
- Tubular brass housing with NiSn plating
- F-male pin and F-female tulip spring are NiSn plated
- F-female tulip spring accepts 0.56-1.15 mm test gauges

Overview

The AFM-xxA/N series is a complete range of precision attenuators providing attenuation from 0 dB up to 20 dB , depending on the model. These attenuators have a very wide frequency range running from 5 MHz to 3 GHz , while flatness and return loss performance remain excellent.

The high frequency shielding exceeds Class A requirements (EN 50083-2 2006) over the entire frequency range.

The small tubular housing and its connectors are made of brass and have a NiSn-plating, as do the F-male inner pin and tulip F-female contact.

Extensive research in a number of labs worldwide has shown that NiSn plating is the best plating material for products used in CATV networks. The most important feature is the protection against Common Path Distortion (CPD).

The tulip female contact is made of beryllium copper, which provides excellent resilience/contact pressure over a wide range of conductor diameters. The tulip contact has been designed specially for connecting coax cables with an inner core diameter of between 0.56 and 1.15 mm . It retains this elasticity and provides effective clamping force even when varying thicknesses of inner conductor are connected in succession.

CPD Safe

CPD (Common Path Distortion) is well known for producing signal interference on networks. It is caused by electrolytic corrosion or the oxidisation of dissimilar metals when in close contact. The AFM-xxA/N series protects against CPD with its NiSn plating.

- Removes a primary cause of CPD
- Reduces signal interference on the network
- Drives fewer reported faults
- Reduces truck rolls
- Improves customer service

Specifications

		MHz	OdB		1 dB		2 dB		3 dB		4 dB		5 dB		6 dB	
Frequency range		5-3000	Typ	Max												
Insertion loss (dB)	In to Out 1	5-1000	0.0	0.3	1.0	1.3	2.0	2.3	3.0	3.3	4.0	4.3	5.0	5.2	6.0	6.3
		1000-2000	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5
		2000-3000	0.0	1.0	1.0	2.0	2.0	3.0	3.0	4.0	4.0	5.0	5.0	6.0	6.0	7.0
Return loss (dB. min)	In to Out 2	5-1000	25.0		25.0		25.0		25.0		25.0		25.0		25.0	
		1000-2000	20.0		20.0		20.0		20.0		20.0		20.0		20.0	
		2000-3000	15.0		15.0		15.0		15.0		15.0		15.0		15.0	
Screening efficiency (dB. typ). Minimum exceeds Class A. ${ }^{1}$		5-300	95.0		95.0		95.0		95.0		95.0		95.0		95.0	
		300-470	90.0		90.0		90.0		90.0		90.0		90.0		90.0	
		470-950	85.0		85.0		85.0		85.0		85.0		85.0		85.0	
		950-3000	65.0		65.0		65.0		65.0		65.0		65.0		65.0	
		MHz	7 dB		8 dB		9dB		10dB		11dB		12dB		13dB	
Frequency range		5-3000	Typ	Max												
Insertion loss (dB)	In to Out 1	5-1000	7.0	7.2	8.0	8.3	9.0	9.2	10.0	10.3	11.0	11.3	12.0	12.3	13.0	13.5
		1000-2000	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	14.0
		2000-3000	7.0	8.0	8.0	9.0	9.0	10.0	10.0	11.0	11.0	12.0	12.0	13.0	13.0	14.5
Return loss (dB. min)	In to Out 2	5-1000	. 0		25.0		25.0		25.0		25.0		25.0		25.0	
		1000-2000	20.0		20.0		20.0		20.0		20.0		20.0		20.0	
		2000-3000	15.0		15.0		15.0		15.0		15.0		15.0		15.0	
Screening efficiency (dB. typ). Minimum exceeds Class A. ${ }^{1}$		5-300	. 0		. 0		. 0		. 0		95.0				95.0	
		300-470	90.0		90.0		90.0		90.0		95.090.0		95.090.0		90.0	
		470-950	85.0		85.0		85.0		85.0		85.0		85.0		85.0	
		950-3000	65.0		65.0		65.0		65.0		65.0		65.0		65.0	
		MHz	14dB		15dB		16dB		17dB		18dB		19dB		20dB	
Frequency range		5-3000	Typ	Max												
Insertion loss (dB)	In to Out 1	5-1000	14.0 14.5 14.0 15.0 14.0 15.5		15.0 15.5 15.0 16.0 15.0 16.5		16.0 16.5 16.0 17.0 16.0 17.5		17.0 17.5 17.0 18.0 17.0 19.0		18.0 19.0 18.0 20.0 18.0 21.0		19.0 20.0 19.0 21.0 19.0 23.0		 20.0 21.0 20.0 22.0 20.0 25.0	
		1000-2000														
		2000-3000														
Return loss (dB. min)	In to Out 2	v	25.		25.0		25.0		25.0		25.0		25.0		25.0	
		1000-2000	20.0		20.0		20.0		20.0		20.0		20.0		20.0	
		2000-3000	15.0		15.0		15.0		15.0		15.0		15.0		15.0	
Screening efficiency (dB.		5-300	95.0		95.0		95.0		95.0		95.0		95.0		95.0	
typ). Minimum exceeds		300-470	90.0													
Class A. ${ }^{1}$		470-950														
		950-3000														
Impedance (0hm, typ)																
Connectors	In/Out															
	Out/In															
Material	Housing								ss with	iSn pla						
	F-tulip spring							Berylliu	Copper	with NiS	plating					
Temperature range (${ }^{\circ} \mathrm{C}$)																
Dimensions (mm)	LxHxD								$29.7 \times$	1×11						
	Male connector	Diameter														
Equipment Approval	CE															

Ordering information

Remarks

1 Tested according to EN 50083-2 2006

Item Name	Article number						
AFM-OA/N	19001742	AFM-6A/N	19001747	AFM-12A/N	19001750	AFM-18A/N	19002698
AFM-1A/N	19001743	AFM-7A/N	19002691	AFM-13A/N	19002694	AFM-19A/N	19002699
AFM-2A/N	19001744	AFM-8A/N	19001748	AFM-14A/N	19002695	AFM-20A/N	19001752
AFM-3A/N	19001745	AFM-9A/N	19002692	AFM-15A/N	19002696		
AFM-4A/N	19001746	AFM-10A/N	19001749	AFM-16A/N	19001751		
AFM-5A/N	19002690	AFM-11A/N	19002693	AFM-17A/N	19002697		

© Copyright 2013 Technetix Group Limited. All rights reserved.

This document is for information only. Features and specifications are subject to change without notice. Technetix, the Technetix logo, Ingress Safe, Modem Safe and certain other marks and logos are trade marks or registered trade marks of Technetix Group Limited in the UK and certain other countries. Other brand and company names are trade marks of their respective owners. Technetix protects its technology and designs by registering patents, trade marks and designs in Europe and certain other countries.

